Hello! Today, we'll venture into the realm of design patterns. Specifically, we'll tackle exercises that apply a single design pattern to problem-solving. Mastering these patterns is a surefire way to extend your coding skills.
Our goal today is to fortify your understanding of when and how to apply specific Object-Oriented Programming (OOP) design patterns. These patterns include Encapsulation
, Abstraction
, Polymorphism
, and Composition
.
We'll dissect four real-life scenarios and distinguish which pattern is applicable and why.
Let's get underway!
The Encapsulation
pattern proves beneficial for the development of a Database Management System (DBMS). Each DBMS table represents a class, the fields represent private data members, and the functions operating on this data serve as methods.
Encapsulation
ensures that data members are accessed through methods that promote data integrity and prevent inadvertent anomalies. Here's a mini-code snippet to support this concept:
C#1using System; 2using System.Collections.Generic; 3 4public class Employees { 5 private Dictionary<int, string> employees = new Dictionary<int, string>(); // private data member 6 7 public void AddEmployee(int eid, string name) { // method to operate on private data 8 employees[eid] = name; 9 } 10 11 public void UpdateEmployee(int eid, string newName) { // method to operate on private data 12 if (employees.ContainsKey(eid)) { 13 employees[eid] = newName; 14 } 15 } 16 17 public string GetEmployee(int eid) { // getter method for private data 18 return employees.ContainsKey(eid) ? employees[eid] : null; 19 } 20} 21 22public class Program { 23 public static void Main(string[] args) { 24 Employees employees = new Employees(); 25 employees.AddEmployee(1, "John"); 26 employees.AddEmployee(2, "Mark"); 27 28 employees.UpdateEmployee(2, "Jake"); 29 30 Console.WriteLine(employees.GetEmployee(1)); // Outputs: John 31 Console.WriteLine(employees.GetEmployee(2)); // Outputs: Jake 32 } 33}
In this context, Encapsulation
restricts direct access to employee data, presenting a protective layer via designated methods.
When transitioning to GUI development, consider the creation of controls like buttons or checkboxes. Despite belonging to the same class, each responds differently when clicked. This situation illustrates Polymorphism
, which allows us to handle different objects uniformly via a common interface.
Check out this illustrative example:
C#1using System; 2 3public class Control { 4 public virtual void Click() { 5 // method that can be overridden 6 } 7} 8 9public class Button : Control { 10 public override void Click() { 11 Console.WriteLine("Button Clicked!"); // overridden method 12 } 13} 14 15public class CheckBox : Control { 16 public override void Click() { 17 Console.WriteLine("CheckBox Clicked!"); // overridden method 18 } 19} 20 21public class Program { 22 public static void Main(string[] args) { 23 Control b = new Button(); 24 Control c = new CheckBox(); 25 26 // Click Controls 27 b.Click(); // Outputs: Button Clicked! 28 c.Click(); // Outputs: CheckBox Clicked! 29 } 30}
Despite sharing the common Click
interface, different controls display unique responses. This characteristic demonstrates Polymorphism
.
Let's explore the Composition
design pattern through a C# approach to create a simple web page structure. Here, we'll build a fundamental structure representing a webpage composed of various elements like headers, paragraphs, and lists. This abstraction allows us to understand how composite objects work together to form a larger system.
C#1using System; 2using System.Collections.Generic; 3using System.Text; 4 5public interface IWebPageElement { 6 string Render(); 7} 8 9public class Header : IWebPageElement { 10 private string text; 11 12 public Header(string text) { 13 this.text = text; 14 } 15 16 public string Render() { 17 return $"<h1>{text}</h1>"; 18 } 19} 20 21public class Paragraph : IWebPageElement { 22 private string text; 23 24 public Paragraph(string text) { 25 this.text = text; 26 } 27 28 public string Render() { 29 return $"<p>{text}</p>"; 30 } 31} 32 33public class ListElement : IWebPageElement { 34 private List<string> items; 35 36 public ListElement(List<string> items) { 37 this.items = items; 38 } 39 40 public string Render() { 41 StringBuilder itemsStr = new StringBuilder(); 42 foreach (var item in items) { 43 itemsStr.Append($"<li>{item}</li>"); 44 } 45 return $"<ul>{itemsStr}</ul>"; 46 } 47} 48 49public class WebPage { 50 private string title; 51 private List<IWebPageElement> elements; 52 53 public WebPage(string title) { 54 this.title = title; 55 this.elements = new List<IWebPageElement>(); 56 } 57 58 public void AddElement(IWebPageElement element) { 59 elements.Add(element); 60 } 61 62 public string Display() { 63 StringBuilder elementsStr = new StringBuilder(); 64 foreach (var element in elements) { 65 elementsStr.AppendLine(element.Render()); 66 } 67 return $"<html>\n<head>\n <title>{title}\n</title>\n</head>\n<body>\n {elementsStr}\n</body>\n</html>"; 68 } 69} 70 71public class Program { 72 public static void Main(string[] args) { 73 WebPage page = new WebPage("My Web Page"); 74 page.AddElement(new Header("Welcome to My Web Page")); 75 page.AddElement(new Paragraph("This is a paragraph of text on the web page.")); 76 77 List<string> items = new List<string> { "Item 1", "Item 2", "Item 3" }; 78 page.AddElement(new ListElement(items)); 79 80 Console.WriteLine(page.Display()); 81 /* 82 Outputs: 83 <html> 84 <head> 85 <title>My Web Page 86 </title> 87 </head> 88 <body> 89 <h1>Welcome to My Web Page</h1> 90 <p>This is a paragraph of text on the web page.</p> 91 <ul><li>Item 1</li><li>Item 2</li><li>Item 3</li></ul> 92 </body> 93 </html> 94 */ 95 } 96}
In this code, we've designed a web page structure using the Composition
design pattern. Each web page element (Header
, Paragraph
, and ListElement
) is an IWebPageElement
, allowing for unified handling while maintaining their specific behaviors (rendering as HTML elements).
The WebPage
class acts as a composite object that can contain an arbitrary number of IWebPageElement
instances, each representing different parts of a web page. By adding these elements to the WebPage
and invoking the Display
method, we dynamically compose a complete web page structure in HTML format.
Consider creating a Vehicle
class in C#. Here, Abstraction
comes into play. You expose only the necessary functionality and abstract away the internal workings of the Vehicle
.
Let's see this in code:
C#1using System; 2 3public abstract class Vehicle { 4 protected string color; 5 protected string engineType; 6 protected bool engineRunning; 7 8 protected Vehicle(string color, string engineType) { 9 this.color = color; 10 this.engineType = engineType; 11 this.engineRunning = false; 12 } 13 14 public abstract void StartEngine(); 15 public abstract void StopEngine(); 16 public abstract void Drive(); 17} 18 19public class Car : Vehicle { 20 public Car(string color, string engineType) : base(color, engineType) { } 21 22 public override void StartEngine() { 23 engineRunning = true; 24 Console.WriteLine("Car engine started!"); 25 } 26 27 public override void StopEngine() { 28 engineRunning = false; 29 Console.WriteLine("Car engine stopped!"); 30 } 31 32 public override void Drive() { 33 if (engineRunning) { 34 Console.WriteLine($"{color} car is driving on the {engineType} engine type!"); 35 } else { 36 Console.WriteLine("Start the engine first!"); 37 } 38 } 39} 40 41public class Program { 42 public static void Main(string[] args) { 43 Car car = new Car("red", "gasoline"); 44 car.StartEngine(); 45 car.Drive(); 46 /* 47 Output: 48 Car engine started! 49 red car is driving on the gasoline engine type! 50 */ 51 } 52}
Here, the Vehicle
abstract class exposes relevant and necessary functions such as StartEngine()
, StopEngine()
, and Drive()
, while the Car
class implements this abstract class and provides concrete implementations. However, it hides or abstracts away internal state management (engineRunning
). This is a basic instance of Abstraction
, which simplifies the interaction with the class and hides underlying complexity.
Let's recap the major OOP patterns:
Encapsulation
: This pattern confines data and related methods into one unit, veiling direct data access.Abstraction
: This pattern offers a simplified interface, cloaking complexity.Polymorphism
: This pattern facilitates treating different objects as related objects of a common superclass.Composition
: This pattern builds elaborate systems by composing closely related objects.
Reflect on these principles and practice applying them to a variety of scenarios to better recognize suitable patterns.
Great job! You've poked and prodded at the practical applications of OOP design patterns. We've explored the use of Encapsulation
in Database Management Systems, the pivotal role of Polymorphism
in GUI development, the importance of Composition
when designing a web page builder, and how Abstraction
helps to build a vehicle structure.
Next up are hands-on exercises to reinforce these concepts. Remember, practice is the master key to understanding these concepts. So keep coding!