Lesson 1

Basic Gradient Boosting Model Training

Topic Overview

Hello and welcome! Today, we'll be diving into training a basic Gradient Boosting Model using financial data, specifically focusing on Tesla ($TSLA) stock prices. By the end of this lesson, you will understand how to implement gradient boosting for predictive analysis in stock trading within a Python framework.

Let's go!

Quick Revision: Data Loading and Preparation

First, let's quickly revise how to load data and prepare it for machine learning:

1import pandas as pd 2from sklearn.preprocessing import StandardScaler 3import datasets 4 5# Load dataset 6tesla = datasets.load_dataset('codesignal/tsla-historic-prices') 7tesla_df = pd.DataFrame(tesla['train']) 8 9# Convert the column to `datetime` 10tesla_df['Date'] = pd.to_datetime(tesla_df['Date']) 11 12tesla_df['SMA_5'] = tesla_df['Adj Close'].rolling(window=5).mean() 13tesla_df['SMA_10'] = tesla_df['Adj Close'].rolling(window=10).mean() 14tesla_df['EMA_5'] = tesla_df['Adj Close'].ewm(span=5, adjust=False).mean() 15tesla_df['EMA_10'] = tesla_df['Adj Close'].ewm(span=10, adjust=False).mean() 16 17# Drop NaN values created by moving averages 18tesla_df.dropna(inplace=True) 19 20# Features and target selection 21features = tesla_df[['Open', 'High', 'Low', 'Close', 'Volume', 'SMA_5', 'SMA_10', 'EMA_5', 'EMA_10']].values 22target = tesla_df['Adj Close'].values 23 24# Standardizing features 25scaler = StandardScaler() 26features_scaled = scaler.fit_transform(features)

In this code we:

  • Convert the 'Date' column to datetime format.
  • Calculate SMA with windows of 5 and 10 days.
  • Calculate EMA with spans of 5 and 10 days.
  • Handle missing values resulting from moving averages.
  • Select relevant features and the target variable.
  • Standardize the feature values for better model performance.
Training a Gradient Boosting Model

Now, let's move on to the core part of our lesson: training the Gradient Boosting Model.

First, we need to split the dataset into training and testing sets. Then, we instantiate a Gradient Boosting Regressor and fit the model to the training data.

Here is the necessary code to accomplish this:

1from sklearn.model_selection import train_test_split 2from sklearn.ensemble import GradientBoostingRegressor 3 4# Splitting the dataset 5X_train, X_test, y_train, y_test = train_test_split(features_scaled, target, test_size=0.25, random_state=42) 6 7# Instantiate and fit the model 8model = GradientBoostingRegressor(random_state=42) 9model.fit(X_train, y_train)
Evaluating Model Performance

Evaluating the model is crucial to understand how well it performs. We will:

  • Make predictions with the trained model.
  • Calculate and print the Mean Squared Error (MSE) to the actual y_test values.

Here is how you can achieve this:

1from sklearn.metrics import mean_squared_error 2 3# Predict and evaluate 4predictions = model.predict(X_test) 5mse = mean_squared_error(y_test, predictions) 6print("Mean Squared Error:", mse)

The output of the above code will be:

Plain text
1Mean Squared Error: 0.4944244179351423

This output indicates the accuracy of our Gradient Boosting Model by providing the mean squared error between the actual and predicted stock prices. A lower MSE value suggests better predictive performance.

Visualizing Predictions

Finally, let's visualize the actual vs predicted values to understand the performance of our model better:

We will plot the actual and predicted values using scatter plots. Here's the visualization code:

1import matplotlib.pyplot as plt 2 3# Plotting predictions vs actual values 4plt.figure(figsize=(10, 6)) 5plt.scatter(range(len(y_test)), y_test, label='Actual', alpha=0.7) 6plt.scatter(range(len(y_test)), predictions, label='Predicted', alpha=0.7) 7plt.title('Actual vs Predicted Values') 8plt.xlabel('Sample Index') 9plt.ylabel('Value') 10plt.legend() 11plt.show()


  • plt.figure(figsize=(10, 6)): This line initializes a new figure with a specified size.
  • plt.scatter(range(len(y_test)), y_test, label='Actual', alpha=0.7): This command creates a scatter plot of the actual values. The range(len(y_test)) generates x-coordinates, while y_test provides actual stock prices. The label parameter is set for the legend, and alpha=0.7 sets the transparency level.
  • plt.scatter(range(len(y_test)), predictions, label='Predicted', alpha=0.7): This command creates a scatter plot of the predicted values, using the same x-coordinates for comparison. The label parameter is set for the legend, and alpha=0.7 sets the transparency level.
  • plt.title('Actual vs Predicted Values'): Sets the title of the plot.
  • plt.xlabel('Sample Index'): Sets the x-axis label to 'Sample Index'.
  • plt.ylabel('Value'): Sets the y-axis label to 'Value'.
  • plt.legend(): Displays the legend to differentiate between actual and predicted values.
  • plt.show(): Renders the plot to the screen.
Lesson Summary

In this lesson, you learned how to train and evaluate a Gradient Boosting Regressor using Tesla ($TSLA) stock data. You've reviewed data preparation, added technical indicators, trained the model, evaluated it using MSE, and visualized the results.

By understanding and implementing these steps, you are better prepared to apply machine learning models to financial data for predictive analysis. Practice these steps to solidify your understanding and apply these concepts to enhance your trading strategies using machine learning.

Enjoy this lesson? Now it's time to practice with Cosmo!

Practice is how you turn knowledge into actual skills.